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ASCoT Project (1998-2002)

(Aerospace Systems Concept to Test)

Project Vision

Physics-based modeling and simulation with sufficient speed and accuracy for
validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal
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Benefit
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Introduction to Sensitivity Methods

Motivation / Objectives

Accurate and consistent derivatives of disciplinary analyses
are needed for optimization and uncertainty analyses

Legacy analysis codes don’t usually provide derivatives
Respond quickly to changes in the design environment

— Design variables, objective, and constraints
— Algorithms, physics models, and computational paradigms

Sensitivity methods

+ physics-based flow modeling = static S&C derivatives

+ time dependent methods = dynamic S&C derivatives
+ optimization methods = conventional design

+ uncertainty propagation = robust design

Assess / improve the computational impact
Transfer tools and technigues to others
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Introduction to Sensitivity Methods

Comparison of Methods

* Finite-differences (FD) (approximation, step size dependent)
 Manual differentiation (exact, tedious, prone to errors)
« Symbolic manipulators (exact, limited scope of application)

 Complex arithmetic (exact, similar to FD, can’t be used if
complex arithmetic is already present, no adjoint formulation)

« Automatic Differentiation (AD) — ADIFOR
— Application is fast and easy for standard Fortran 77
— Exact to machine and problem formulation precision
— Can be computationally much faster than FD
— Forward (direct) and reverse (adjoint) forms available
— Rigorous verification of accuracy (not discussed here)
* Hybrid schemes (AIAA 94-4262* and AIAA 2001-2529)
— Leverage strengths / minimize weaknesses of several methods
— Employ disciplinary, code, and differentiation knowledge
— Improve computational efficiency

* Also, Journal of Computational Physics, Vol. 129, p307-331, 1996 LLGreen 4



The ADIFOR* Suite of
Automatic Differentiation
Tools
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Design Engineer

In Fortran or C?
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With MPI parallel?
Hessians, too?
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* Developed by Rice University and Argonne National Laboratory LLGreen 5
Winner 1995 Wilkinson Prize for Numerical Software




ADIFOR Connections
to Other MDOB Activities

HSCT4

Session: Applications 2 \

Session: Methods 1

Session: Methods 2 _ _ _
Session: Design Under Uncertainty

Aerodynamic Uncertainty Propagation

Robust Aerodynamic Design
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PMARC

Panel Method — Ames Research Center

Dale Ashby, et.al. (NASA ARC)

Time-dependent low-order potential-flow with boundary-layer correction
Forward- and reverse-mode ADIFOR applications

CFL3D

Computational Fluids Laboratory 3-Dimensional

Thomas, Rumsey, Biedron, etc. (NASA LaRC)

Euler / Navier-Stokes (N-S); several turbulence models
N-S Spalart-Allmaras (S-A) turbulent flow cases presented

Executes on NASA Langley and Ames Silicon Graphics, Inc.(SGlI)
Origin 2000™ parallel computers

Version 6 includes dynamic memory and MPI parallel execution
Version 6+ modified for steady-state, constant rotational rate motions
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Featured ADIFOR 3.0 Applications

Computation of static / dynamic stability and control derivatives
— 5 control variables / 6 aircraft responses
— Forward mode AD application to PMARC and CFL3D
— MDOB, AirSC/VDB, AirSC/DCB, and Lockheed-Martin (1998 - 2000)

High Speed Civil Transport aerodynamic shape optimization

— 401 design variables / 56 constraints / 1 aircraft response

— Reverse-mode AD application to CFL3D

— Boeing Long Beach with MDOB expertise (1999 - 2000)
Reusable Launch Venhicle (RLV) aero-thermal shape optimization

— 35 design variables / 6 constraints / 2 vehicle responses

— Reverse-mode AD application to CFL3D with thermal effects

— Boeing Long Beach with MDOB funding and expertise (2001)
Control placement effectiveness study (time permitting)

— 1353 placement variables / 3 aircraft responses

— Reverse-mode AD application to PMARC

— MDOB, AirSC/DCB, and Lockheed-Martin (1998)
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Example ADIFOR Applications

e CFL3D Euler/Navier-Stokes code

PMARC linear aerodynamics code

« Forward mode * Reverse Mode
e Chain rule of calculus » Discrete adjoint formulation
 Number of variables:  Number of variables:
dependent > independent independent > dependent
« Aircraft stability derivatives e Control placement effectiveness
Aircraft Forces & Moments Surface Normal

Displacements

CN o
@ Py m = Cm
D, q,r Cl (1000s) cn

Pilot Commands Aircraft Moments
AlAA 99-3136 AlAA 98-4807
AlAA 2000-4321 AlAA 2000-1560
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Lockheed-Martin Innovative
Control Effectors (ICE) Configuration

CN

Relative wind
CFD volume grid 3 with million cells, full span

and derived linear aerodynamics surface grid LLGreen 10



Three a ranges of flow structure
Pitching Moment, CFL3Dv6 N-S S-A, Mach = 0.6, ICE Configuration
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Long. Static Stability (a derivatives)

CFL3Dv6.AD N-S / S-A, Mach = 0.6, ICE Configuration
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Non-inertial Frame of Reference’

Inertial (fixed) Non-inertial CFD grid (moving)

« Efficient method to simulate moving CFD grids
— Steady-state solutions of constant-rate motion

« Relatively simple to implement
— Add source term to governing equations (induced body forces)
— Increment boundary and initial conditions (rotational velocities)

1 Limache, A. C. and CIiff, E. M.: “Aerodynamic Sensitivity LLGreen 13
Theory for Rotary Stability Derivaties”, AIAA 99-4313



Non-inertial Modifications to CFL3Dv6

: 10
Solution update: 36_? =R(Q)+S Source Term
Conserved Q=[p pu v pv ¢

variables: ) T
Source term: > :3[0 o, 6, O, og
‘|
% = Cell Volume F'”ri?' |
particle
1S [u v W] (moving)

(L) . .
«»» Noninertial
grid (moving)
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Roll Rate Derivatives

CFL3Dv6.NI.LAD N-S / S-A, Mach = 0.6, ICE Configuration
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CFL3D / CFL3D.AD / CFL3D.NI.AD

Reference Data Comparison Summary, ICE Configuration

Description Performance in Different Flow Structures
Attached Vortical Bursting
0-5a 6-15a >15a

Force and moment (Cm) Excellent Excellent Good

Long. Static stability (Cm,) Excellent Excellent Good

Lat. / Dir. Static stability  (Clp) Excellent Good Poor*

Dynamic derivatives (Cl,) Excellent Excellent Good

CFL3D.NI.AD, 0-15 deg a 30 hr. per angle of attack case

CFL3D.NI.AD, >15 deg a 90 hr. per angle of attack case

Center-difference CFL3D.NI 0-15 deg a 44 hr. per angle of attack case

Execution on 16-processor SGI Origin 2000™ with 12 Gb RAM
* Still better than previous capability
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High Speed Civil Transport Optimization

With ADJIFOR*-Generated CFL3D Adjoint
Computational Fluid Dynamics Code

« FASTER
— Development time
— Design cycle execution time

~ 25 times faster than comparable
nonlinear design practice**

« BETTER
— Numerical accuracy
— Design freedom
— Design results

~ 5% cruise drag reduction,
401 design variables** « CHEAPER

— Less human resources
— Less computer resources
~ 10 times faster inviscid

1 *%
* Developed by Rice University deSIQn cycle
** Initial Boeing Long Beach wing-body result LLGreen 17



X-37 Wing/Body
Aeroheating Optimization

35 Design Variables to Minimize Maximum Heat Flux
CFL3D N-S (Menter), 38 Blocks, 0.85M Points

Max. Heat Flux Reduction
(7% on Forebody and 16% on Wing Leading-Edge)

Initial Boeing Long Beach results LLGreen 18



Control Placement Effectiveness
PMARC.AD linear aerodynamics code

 Model inflatable control effectors as bumps (outward normal
displacements (Xn) of surface grid points)

e Control placement effectiveness is the derivative of
pitch (Cm), roll (Cl), and yaw (Cn) moment coefficients
with respect to surface displacement (Xn)

« Calculated for each of 1353 surface grid points
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Part of integrated control effectors design and simulation
package presented to NASA Administrator Daniel Goldin
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Ongoing and Future Work

Non-inertial modifications were implemented in the production
version of CFL3Dv6; sensitivity studies of un-commanded aircraft
motions (for example, F-18 E/F wing rock) are planned as
cooperation between ASCOT and Abrupt Wing Stall Programs

Second and higher derivative methods are being examined for
use with S&C calculations to provide uncertain S&C data on F-16XL
for use in robust control law design within ASCOT

Second and higher derivative methods are being examined for
use with aircraft robust design within ASCOT

First-order sensitivity methods are being applied to the
2"d Generation RLV Program for uncertainty quantification
and risk reduction

Sensor / actuator placement studies for deformable nacelles
are planned under the Ultra-Efficient Engine Program

LLGreen 20



Conclusions

Automatic Differentiation enables the rapid development of
next-generation analysis and design tools from legacy codes

Automatic Differentiation provides increased confidence through
automatic generation of sensitivity analyses

Automatic Differentiation has contributed significantly to aircraft
computational stability and control studies

Recent MDOB work with ADIFOR has pioneered advanced
sensitivity techniques which reduce the computational impact of
sensitivity analyses

MDOB actively seeks to transfer sensitivity tools and techniques
to others

Automatic Differentiation enables probabilistic uncertainty
guantification and propagation through method of moments
(Newman)

LLGreen 21
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